Step of Proof: neg_assert_of_eq_int
9,38
postcript
pdf
Inference at
*
1
0
I
of proof for Lemma
neg
assert
of
eq
int
:
1.
x
:
2.
y
:
(
(
(
x
=
y
)))
x
y
latex
by PERMUTE{1:n, 2:n, 3:n, 3:n, 4:n, 5:n, 6:n, 7:n, 8:n, 9:n}
latex
1
: .....wf..... NILNIL
1:
(
(
(
x
=
y
)))
2
: .....wf..... NILNIL
2:
(
(
x
=
y
))
3
: .....wf..... NILNIL
3:
x
y
4
: .....wf..... NILNIL
4:
(
(
x
=
y
))
5
: .....wf..... NILNIL
5:
(
x
=
y
)
6
: .....wf..... NILNIL
6:
x
7
: .....wf..... NILNIL
7:
y
8
: .....wf..... NILNIL
8:
x
y
=
x
y
9
:
9:
(
(
x
=
y
))
x
y
.
Definitions
t
T
,
x
:
A
B
(
x
)
,
Type
,
f
(
a
)
,
x
:
A
B
(
x
)
,
,
s
=
t
,
a
b
T
,
(
i
=
j
)
,
b
,
A
,
,
x
:
A
.
B
(
x
)
,
P
Q
,
P
Q
,
P
Q
,
P
Q
Lemmas
assert
of
eq
int
,
not
functionality
wrt
iff
,
iff
functionality
wrt
iff
origin